Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(5)2023 05 19.
Article in English | MEDLINE | ID: covidwho-20242059

ABSTRACT

Interleukin-6 has been recognized as a major role player in COVID-19 severity, being an important regulator of the cytokine storm. Hence, the evaluation of the influence of polymorphisms in key genes of the IL-6 pathway, namely IL6, IL6R, and IL6ST, may provide valuable prognostic/predictive markers for COVID-19. The present cross-sectional study genotyped three SNPs (rs1800795, rs2228145, and rs7730934) at IL6. IL6R and IL6ST genes, respectively, in 227 COVID-19 patients (132 hospitalized and 95 non-hospitalized). Genotype frequencies were compared between these groups. As a control group, published data on gene and genotype frequencies were gathered from published studies before the pandemic started. Our major results point to an association of the IL6 C allele with COVID-19 severity. Moreover, IL-6 plasmatic levels were higher among IL6 CC genotype carriers. Additionally, the frequency of symptoms was higher at IL6 CC and IL6R CC genotypes. In conclusion, the data suggest an important role of IL6 C allele and IL6R CC genotype on COVID-19 severity, in agreement with indirect evidence from the literature about the association of these genotypes with mortality rates, pneumonia, and heightening of protein plasmatic levels pro-inflammatory driven effects.


Subject(s)
COVID-19 , Interleukin-6 , Humans , Interleukin-6/genetics , Cross-Sectional Studies , Receptors, Interleukin-6/genetics , COVID-19/genetics , Genotype , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Cytokine Receptor gp130/genetics
2.
Biology (Basel) ; 12(5)2023 May 19.
Article in English | MEDLINE | ID: covidwho-20240478

ABSTRACT

A persistent state of inflammation has been reported during the COVID-19 pandemic. This study aimed to assess short-term heart rate variability (HRV), peripheral body temperature, and serum cytokine levels in patients with long COVID. We evaluated 202 patients with long COVID symptoms categorized them according to the duration of their COVID symptoms (≤120 days, n = 81; >120 days, n = 121), in addition to 95 healthy individuals selected as controls. All HRV variables differed significantly between the control group and patients with long COVID in the ≤120 days group (p < 0.05), and participants in the long COVID ≤120 days group had higher temperatures than those in the long COVID >120 days group in all regions analysed (p < 0.05). Cytokine analysis showed higher levels of interleukin 17 (IL-17) and interleukin 2 (IL-2), and lower levels of interleukin 4 (IL-4) (p < 0.05). Our results suggest a reduction in parasympathetic activation during long COVID and an increase in body temperature due to possible endothelial damage caused by the maintenance of elevated levels of inflammatory mediators. Furthermore, high serum levels of IL-17 and IL-2 and low levels of IL-4 appear to constitute a long-term profile of COVID-19 cytokines, and these markers are potential targets for long COVID-treatment and prevention strategies.

3.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2303977

ABSTRACT

The first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in Brazil was diagnosed on February 26, 2020. Due to the important epidemiological impact of COVID-19, the present study aimed to analyze the specificity of IgG antibody responses to the S1, S2 and N proteins of SARS-CoV-2 in different COVID-19 clinical profiles. This study enrolled 136 individuals who were diagnosed with or without COVID-19 based on clinical findings and laboratory results and classified as asymptomatic or as having mild, moderate or severe disease. Data collection was performed through a semistructured questionnaire to obtain demographic information and main clinical manifestations. IgG antibody responses to the S1 and S2 subunits of the spike (S) protein and the nucleocapsid (N) protein were evaluated using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer's instructions. The results showed that among the participants, 87.5% (119/136) exhibited IgG responses to the S1 subunit and 88.25% (120/136) to N. Conversely, only 14.44% of the subjects (21/136) displayed S2 subunit responses. When analyzing the IgG antibody response while considering the different proteins of the virus, patients with severe disease had significantly higher antibody responses to N and S1 than asymptomatic individuals (p ≤ 0.0001), whereas most of the participants had low antibody titers against the S2 subunit. In addition, individuals with long COVID-19 showed a greater IgG response profile than those with symptomatology of a short duration. Based on the results of this study, it is concluded that levels of IgG antibodies may be related to the clinical evolution of COVID-19, with high levels of IgG antibodies against S1 and N in severe cases and in individuals with long COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Antibody Formation , Immunoglobulin G , Nucleocapsid Proteins , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
Hum Immunol ; 82(4): 247-254, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1039364

ABSTRACT

Immunorelevant genes are among the most probable modulators of coronavirus disease 2019 (COVID-19) progression and prognosis. However, in the few months of the pandemic, data generated on host genetics has been scarce. The present study retrieved data sets of HLA-B alleles, KIR genes and functional single nucleotide polymorphisms (SNPs) in cytokines related to COVID-19 cytokine storm from two publicly available databases: Allele Frequency Net Database and Ensembl, and correlated these frequency data with Case Fatality Rate (CFR) and Daily Death Rates (DDR) across countries. Correlations of eight HLA-B alleles and polymorphisms in three cytokine genes (IL6, IL10, and IL12B) were observed and were mainly associated with DDR. Additionally, HLA-B correlations suggest that differences in allele affinities to SARS-CoV-2 peptides are also associated with DDR. These results may provide rationale for future host genetic marker surveys on COVID-19.


Subject(s)
COVID-19/pathology , Cytokines/genetics , HLA-B Antigens/genetics , Receptors, KIR/genetics , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Gene Frequency/genetics , Genetic Markers/genetics , Humans , Interleukin-10/genetics , Interleukin-12 Subunit p40/genetics , Interleukin-6/genetics , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL